Issue |
EPL
Volume 92, Number 6, December 2010
|
|
---|---|---|
Article Number | 64004 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/92/64004 | |
Published online | 25 January 2011 |
Dynamics and interactions of active rotors
Department of Mathematics, University of Bristol - Clifton, Bristol BS8 1TW, UK, EU
Received:
29
May
2010
Accepted:
7
December
2010
We consider a simple model of an internally driven self-rotating object; a rotor, confined to two dimensions by a thin film of low-Reynolds-number fluid. We undertake a detailed study of the hydrodynamic interactions between a pair of rotors and find that their effect on the resulting dynamics is a combination of fast and slow motions. We analyse the slow dynamics using an averaging procedure to take account of the fast degrees of freedom. Analytical results are compared with numerical simulations. Hydrodynamic interactions mean that while isolated rotors do not translate, bringing together a pair of rotors leads to motion of their centres. Two rotors spinning in the same sense rotate with an approximately constant angular velocity around each other, while two rotors of opposite sense, both translate with the same constant velocity, which depends on the separation of the pair. As a result a pair of counter-rotating rotors are a promising model for controlled self-propulsion.
PACS: 47.63.mf – Low-Reynolds-number motions / 05.65.+b – Self-organized systems / 87.10.-e – General theory and mathematical aspects
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.