Europhys. Lett.
Volume 63, Number 3, August 2003
Page(s) 361 - 367
Section Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics
Published online 01 November 2003
DOI: 10.1209/epl/i2003-00532-1
Europhys. Lett., 63 (3) , pp. 361-367 (2003)

Rotational bifurcation of localized dissipative structures

A. S. Moskalenko, A. W. Liehr and H.-G. Purwins

Institut für Angewandte Physik - Corrensstr. 2/4, D-48149 Münster, Germany

(Received 31 January 2003; accepted in final form 27 May 2003)

A topic of great interest for pattern-forming systems is the possibility of a spontaneous change in symmetry and dynamics as one slowly varies an external parameter. In this letter, we identify that a stationary localized structure without rotational symmetry, such as a pair of bound dissipative solitons, can spontaneously begin to rotate. The underlying mechanism is similar to the widely studied mechanism of the drift bifurcation in which structures begin to drift at constant velocity. We find a particular example of this new bifurcation for a 3-component reaction-diffusion system in 2 dimensions, and show that it can precede the drift bifurcation.

47.54.+r - Pattern selection; pattern formation.
05.45.Yv - Solitons.
02.30.Oz - Bifurcation theory.

© EDP Sciences 2003