Europhys. Lett.
Volume 73, Number 4, February 2006
Page(s) 607 - 613
Section Condensed matter: electronic structure, electrical, magnetic, and optical properties
Published online 06 January 2006
Europhys. Lett., 73 (4), pp. 607-613 (2006)
DOI: 10.1209/epl/i2005-10429-y

Unexpected effect of internal degrees of freedom on transverse phonons in supercooled liquids

A. Patkowski1, J. Gapinski1, G. Meier2, H. Kriegs2, A. Le Grand3 and C. Dreyfus3

1  Institute of Physics, A. Mickiewicz University Umultowska 85, 61-614, Poznan, Poland
2  Institut für Festkörperforschung, Forschungszentrum Jülich Postfach 1913, 52425 Jülich, Germany
3  PMC, UMR 7602 - Case Postale 86, UPMC, 4 Place Jussieu, 75005 Paris, France

received 3 October 2006; accepted in final form 19 December 2006
published online 6 January 2006

We show experimentally that in a supercooled liquid composed of molecules with internal degrees of freedom the internal modes contribute to the frequency-dependent shear viscosity and damping of transverse phonons, which results in an additional broadening of the transverse Brillouin lines. Earlier, only the effect of internal modes on the frequency-dependent bulk viscosity and damping of longitudinal phonons was observed and explained theoretically in the limit of weak coupling of internal degrees of freedom to translational motion. A new theory is needed to describe this new effect. We also demonstrate that the contributions of structural relaxation and internal processes to the width of the Brillouin lines can be separated by measurements under high pressure.

78.35.+c - Brillouin and Rayleigh scattering; other light scattering.
64.70.Pf - Glass transitions.
62.50.+p - High-pressure and shock wave effects in solids and liquids.

© EDP Sciences 2006