Issue
EPL
Volume 84, Number 1, October 2008
Article Number 18004
Number of page(s) 6
Section Interdisciplinary Physics and Related Areas of Science and Technology
DOI http://dx.doi.org/10.1209/0295-5075/84/18004
Published online 25 September 2008
EPL, 84 (2008) 18004
DOI: 10.1209/0295-5075/84/18004

Nanofluidics in cellular tubes under oscillatory extension

P. Nassoy1, D. Cuvelier1, R. Bruinsma2 and F. Brochard-Wyart1

1   Physico-Chimie Curie, Institut Curie, Section de Recherche - 26 rue d'Ulm, 75248 Paris Cedex 05, France, EU
2   Department of Physics and Astronomy, The University of California at Los Angeles Los Angeles 90095-1569, CA, USA

pierre.nassoy@curie.fr
francoise.brochard@curie.fr

received 5 June 2008; accepted in final form 22 August 2008; published October 2008
published online 25 September 2008

Abstract
Membrane nanotubes or tethers extruded from cells exhibit dynamic features that are believed to exhibit viscoelastic rheological properties. We have performed typical microrheology experiments on tethers pulled from red blood cells by measuring the force response to small oscillatory extensions or compressions. Our data, supported by a simple theoretical model, show that the force response does not reflect any intrinsic viscoelastic properties of the tethers themselves, but instead is dominated by the drainage of the internal cellular fluid into and out of the oscillating nanoconduit over a frequency-dependent penetration depth. The simplicity of tether rheology suggests its usage as a probe for measuring the local viscosity of the cytosol near the plasma membrane.

PACS
87.85.gf - Fluid mechanics and rheology.
87.16.dm - Mechanical properties and rheology.
47.60.Dx - Flows in ducts and channels.

© EPLA 2008