Issue
EPL
Volume 87, Number 1, July 2009
Article Number 10009
Number of page(s) 6
Section General
DOI http://dx.doi.org/10.1209/0295-5075/87/10009
Published online 24 July 2009
EPL, 87 (2009) 10009
DOI: 10.1209/0295-5075/87/10009

Generalized Ising model for dynamic adaptation in autonomous systems

S. Gupta1, A. Ray1 and S. Phoha2

1   Complex Systems Simulation Laboratory, Pennsylvania State University - University Park, 16802 PA, USA
2   Applied Research Laboratory, Pennsylvania State University - University Park, 16802 PA, USA

axr2@psu.edu

received 23 December 2008; accepted in final form 25 June 2009; published July 2009
published online 24 July 2009

Abstract
The paper presents a concept of Statistical Mechanics for observation-based adaptation in autonomous systems, which is typically exhibited by simple biological systems. Time-critical operations of autonomous systems (e.g., unmanned undersea vehicles (UUVs)), require in situ adaptation in the original plan of action and rapid response to evolving contextual changes and situation awareness for enhanced autonomy. In this regard, a concept of dynamic plan adaptation (DPA) is formulated in the setting of a generalized Ising model (e.g., the Potts model) over a discretized configuration space, where the targets (e.g., undersea mines) are distributed. An exogenous time-dependent potential field is defined that controls the movements of the autonomous system in the configuration space, while the decision-theoretic tool for dynamic plan adaptation is built upon local neighborhood interactions. The efficacy of the DPA algorithm has been evaluated by simulation experiments that demonstrate early detection of localized neighborhood targets as compared to a conventional search method involving back and forth motions.

PACS
05.65.+b - Self-organized systems.
89.20.Ff - Computer science and technology.
75.10.Hk - Classical spin models.

© EPLA 2009