Issue
EPL
Volume 87, Number 4, August 2009
Article Number 40004
Number of page(s) 6
Section General
DOI http://dx.doi.org/10.1209/0295-5075/87/40004
Published online 07 September 2009
EPL, 87 (2009) 40004
DOI: 10.1209/0295-5075/87/40004

Algebraic approach to pseudospin symmetry for the Dirac equation with scalar and vector modified Pöschl-Teller potentials

Gao-Feng Wei1 and Shi-Hai Dong2

1   Department of Physics, Xi'an University of Arts and Science - Xi'an 710065, PRC
2   Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos - Mexico D. F. 07738, Mexico

fgwei_2000@163.com
dongsh2@yahoo.com

received 23 April 2009; accepted in final form 6 August 2009; published August 2009
published online 7 September 2009

Abstract
By the algebraic method we study the approximate solution to the Dirac equation with scalar and vector modified Pöschl-Teller (MPT) potentials carrying pseudospin symmetry. The transcendental energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. It is found that there exist only negative-energy states for bound states under pseudospin symmetry, and the energy levels will approach a constant when the potential parameter $\alpha $ goes to zero. There also exist the corresponding degenerate states between (n+1, k- 2) and (n, k) in the case of pseudospin symmetry.

PACS
03.65.Ge - Solutions of wave equations: bound states.
03.65.Pm - Relativistic wave equations.
34.20.Cf - Interatomic potentials and forces.

© EPLA 2009