Issue |
EPL
Volume 131, Number 2, July 2020
|
|
---|---|---|
Article Number | 27001 | |
Number of page(s) | 7 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/131/27001 | |
Published online | 25 August 2020 |
Topological transitions of spin-excitations in insulating chiral antiferromagnets
Perimeter Institute for Theoretical Physics - 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada
Received: 2 February 2020
Accepted: 9 July 2020
We present a comprehensive study of strain-induced topological magnon phase transitions in insulating three-dimensional (3D) topological chiral antiferromagnets on the kagome-lattice. We show that by applying (100) uniaxial strain, 3D insulating antiferromagnetic Weyl magnons (WMs) manifest as an intermediate phase between a strain-induced 3D magnon Chern insulator (MCI) with integer Chern numbers and a 3D trivial magnon insulator with zero Chern number. In addition, we show that strain suppresses the topological thermal Hall conductivity of magnons in these systems. Due to the similarity between 3D insulating and metallic kagome chiral antiferromagnets, we envision that the current results could also manifest in the 3D antiferromagnetic topological Weyl semimetals Mn3Sn/Ge.
PACS: 75.10.Jm – Quantized spin models, including quantum spin frustration / 73.43.-f – Quantum Hall effects
© 2020 EPLA
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.