Issue |
EPL
Volume 136, Number 2, October 2021
|
|
---|---|---|
Article Number | 27005 | |
Number of page(s) | 5 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/ac35f5 | |
Published online | 08 February 2022 |
Magnetic order and electronic structure of [110]-oriented LaTiO3 films: A theoretical study
School of Science, Nanjing University of Posts and Telecommunications - Nanjing 210023, China
(a) wyk@njupt.edu.cn (corresponding author)
(b) lixa@njupt.edu.cn
Received: 1 September 2021
Accepted: 3 November 2021
The epitaxial strain effects on the magnetic ground state and electronic structure of [110]-oriented LaTiO3 films have been calculated using the density functional theory. First, the lattice constants of the a-axis and c-axis are fixed to study. For the compressive strain, a magnetic phase transition from the original G-type antiferromagnet to A-type antiferromagnet is predicted when using the SrTiO3, LaGaO3, and LaAlO3 substrates, similar to the [001] case. Interestingly, a new magnetic phase, i.e., the ferromagnetic order, will appear when the larger compressive LaSrAlO4 is used. For the tensile strain, although the G-type antiferromagnetic order is robust as the ground state, the exchange couplings are significantly increased, which will enhance the Néel temperature. Furthermore, the contributions of dyz, dxz and dxy orbitals to the bands near the Fermi level show an obvious difference due to the Jahn-Teller distortions. For comparison, the case with fixed b-axis and c-axis is also tested, which shows that the compressive strained LaTiO3 remains the G-type antiferromagnetic order while the tensile strained LaTiO3 exhibits the A-type antiferromagnetic order. The underlying physical mechanisms are the lattice distortions, including the Ti-O-Ti bond angles and Ti-O bond lengths.
© 2022 EPLA
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.