Issue |
Europhys. Lett.
Volume 34, Number 5, May II 1996
|
|
---|---|---|
Page(s) | 355 - 360 | |
Section | Condensed matter: structure, thermal and mechanical properties | |
DOI | https://doi.org/10.1209/epl/i1996-00464-8 | |
Published online | 01 September 2002 |
Stability of the conventional fixed point of the nonlinear sigma-model in (2 + epsilon)-dimensions
Department of Physics, Simon Fraser
University, Burnaby, British Columbia, V5A 1S6 Canada
Received:
8
September
1995
Accepted:
20
March
1996
The stability of the conventional fixed point of the nonlinear σ-model in -dimensions has been studied by calculating the anomalous dimensions of leading order symmetric gradient operators. The full dimensions, i.e. the canonical dimensions plus the anomalous dimensions, of these operators at the fixed point are found to be negative and therefore the fixed point is stable against the perturbation of these operators. The results indicate that as far as the O(n) symmetry-breaking regime is concerned, the conventional treatment of this model is adequate.
PACS: 64.60.Ak – Renormalization-group, fractal, and percolation studies of phase transitions / 03.70.+k – Theory of quantized fields / 05.70.Jk – Critical point phenomena
© EDP Sciences, 1996
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.