Issue |
Europhys. Lett.
Volume 39, Number 4, August II 1997
|
|
---|---|---|
Page(s) | 347 - 352 | |
Section | General | |
DOI | https://doi.org/10.1209/epl/i1997-00360-9 | |
Published online | 01 September 2002 |
On an optical realization of the SU(1,1) geometric phase, and the Bolyai-Lobachevsky plane
Department of Theoretical Physics,
Attila József University, Szeged,
Tisza L. krt 84, H-6720, Hungary
Received:
25
April
1997
Accepted:
9
July
1997
We introduce and analyze the SU(1,1) geometric phase emerging in a series of discrete transformations in an optical ring cavity containing partial reflectors. In the theoretical description the underlying projective space is the Bolyai-Lobachevsky (B-L) plane. We show that the resulting geometric phase is equal to half of the area of an object on this plane, determined by the experimental parameters. In the case of three transformations this object is a triangle, and its sides and angles can be related to the reflection and transmission coefficients of the applied mirrors.
PACS: 03.65.Bz – Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm effect, Bell inequalities, Berry's phase) / 42.79.-e – Optical elements, devices, and systems
© EDP Sciences, 1997
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.