Issue |
Europhys. Lett.
Volume 44, Number 6, December II 1998
|
|
---|---|---|
Page(s) | 734 - 740 | |
Section | Condensed matter: structure, thermal and mechanical properties | |
DOI | https://doi.org/10.1209/epl/i1998-00533-6 | |
Published online | 01 September 2002 |
Quantum atomic delocalization vs. structural disorder in amorphous silicon
Instituto de Ciencia de Materiales, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
Institut für Theoretische Festkörperphysik, Universität Karlsruhe D-76128 Karlsruhe, Germany
Received:
4
December
1998
Accepted:
26
October
1998
Quantum effects on the atom delocalization in amorphous silicon have been studied by path-integral Monte Carlo simulations from 30 to 800 K. The quantum delocalization is appreciable vs. topological disorder, as seen from structural observables such as the radial distribution function (RDF). At low temperatures, the width of the first peak in the RDF increases by a factor of 1.5 due to quantum effects. The overall anharmonicity of the solid vibrations at finite temperatures in amorphous silicon is clearly larger than in the crystalline material. Low-energy vibrational modes are mainly located on coordination defects in the amorphous material.
PACS: 61.43.Dq – Amorphous semiconductors, metals, and alloys / 81.05.Gc – Amorphous semiconductors / 05.30.-d – Quantum statistical mechanics
© EDP Sciences, 1998
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.