Issue |
Europhys. Lett.
Volume 55, Number 1, July 2001
|
|
---|---|---|
Page(s) | 105 - 111 | |
Section | Condensed matter: electronic structure, electrical, magnetic, and optical properties | |
DOI | https://doi.org/10.1209/epl/i2001-00388-9 | |
Published online | 01 December 2003 |
Bounding and approximating parabolas for the spectrum of Heisenberg spin systems
1
Universität Osnabrück, Fachbereich Physik -
D-49069 Osnabrück, Germany
2
Ames Laboratory & Department of Physics and Astronomy
Iowa State University - Ames, IA 50011, USA
Received:
29
January
2001
Accepted:
26
April
2001
We prove that for a wide class of quantum spin systems with
isotropic Heisenberg coupling the energy eigenvalues which
belong to a total spin quantum number S have upper and lower
bounds depending at most quadratically on S. The only
assumption adopted is that the mean coupling strength of any
spin with respect to its neighbours is constant for all N spins. The
coefficients of the bounding parabolas are given in terms of
special eigenvalues of the coupling matrix which are
usually easily evaluated. In addition, we show that the bounding
parabolas, if properly shifted, provide very good approximations
of the true boundaries of the spectrum. We present numerical
examples of frustrated rings, a cube, and an icosahedron.
PACS: 75.10.Jm – Quantized spin models / 75.10.Hk – Classical spin models / 75.50.Xx – Molecular magnets
© EDP Sciences, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.