Issue |
Europhys. Lett.
Volume 60, Number 4, November 2002
|
|
---|---|---|
Page(s) | 587 - 593 | |
Section | Condensed matter: structure, mechanical and thermal properties | |
DOI | https://doi.org/10.1209/epl/i2002-00259-y | |
Published online | 01 November 2002 |
Droplets and the configurational entropy crisis for random first-order transitions
Department of Chemistry and Biochemistry, University
of California
9500 Gilman Drive, La Jolla, CA 92093-0371, USA
Received:
11
June
2002
Accepted:
2
September
2002
We consider the effect of droplet excitations in the random first-order transition theory of glasses on the configurational entropy. The contribution of these excitations is estimated both at and above the ideal glass transition temperature. The temperature range where such excitations could conceivably modify or “round-out” an underlying glass transition temperature is estimated, and found to depend strongly on the surface tension between locally metastable phases in the supercooled liquid. For real structural glasses this temperature range is found to be very narrow, consistent with the quantitative success of the theory. For certain finite-range spin-glass models, however, the surface tension is estimated to be significantly lower leading to much stronger entropy renormalizations, thus providing an explanation for the lack of a strict thermodynamic glass transition in simulations of these models.
PACS: 64.70.Pf – Glass transitions / 75.10.Nr – Spin-glass and other random models
© EDP Sciences, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.