Issue |
Europhys. Lett.
Volume 70, Number 4, May 2005
|
|
---|---|---|
Page(s) | 485 - 491 | |
Section | Condensed matter: electronic structure, electrical, magnetic, and optical properties | |
DOI | https://doi.org/10.1209/epl/i2005-10016-4 | |
Published online | 13 April 2005 |
Fermionic systems with charge correlations
Dipartimento di Fisica “E. R. Caianiello” - Unità di ricerca INFM di Salerno Università degli Studi di Salerno - I-84081 Baronissi (SA), Italy
Received:
3
March
2005
Accepted:
23
March
2005
In this paper, we show that a system of localized
particles, satisfying the Fermi statistics and subject to
finite-range interactions, can be exactly solved in any dimension.
In fact, in this case it is always possible to find a finite
closed set of eigenoperators of the Hamiltonian. Then, the
hierarchy of the equations of motion for the Green's functions
eventually closes and exact expressions for them are obtained in
terms of a finite number of parameters. For example, the method is
applied to the two-state model (equivalent to the spin-(1/2) Ising
model) and to the three-state model (equivalent to the extended
Hubbard model in the ionic limit or to the spin-1 Ising model).
The models are exactly solved for any dimension d of the
lattice. The parameters are self-consistently determined in the
case of .
PACS: 71.10.-w – Theories and models of many-electron systems / 71.10.Fd – Lattice fermion models (Hubbard model, etc.) / 71.27.+a – Strongly correlated electron systems; heavy fermions
© EDP Sciences, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.