Issue |
Europhys. Lett.
Volume 76, Number 6, December 2006
|
|
---|---|---|
Page(s) | 1207 - 1213 | |
Section | Interdisciplinary physics and related areas of science and technology | |
DOI | https://doi.org/10.1209/epl/i2006-10379-x | |
Published online | 16 November 2006 |
Observation of single-defect relaxation in a freely suspended nano resonator
1
Center for NanoScience and Sektion Physik, Ludwigs-Maximilians-Universität München - Geschwister-Scholl-Platz 1, 80539 München, Germany
2
Electrical and Computer Engineering, University of Wisconsin-Madison 1415 Engineering Drive, Madison WI 53706, USA
3
Lehrstuhl für Experimentalphysik I, Universität Augsburg Universitätsstraße 1, 86135 Augsburg, Germany
4
Institut für Angewandte und Experimentelle Physik, Universität Regensburg 93040 Regensburg, Germany
5
Walter Schottky Institut - Am Coloumbwall 3, 85748 Garching, Germany
Received:
13
October
2006
Accepted:
18
October
2006
Relaxation of single defects in a nanometer-sized resonator is observed by coupling surface acoustic waves to a freely suspended beam. The surface waves act on the resonator as driving forces being able to modify the internal friction in the beam. In analogy to classical experiments on internal friction in macroscopic samples, we perform frequency, amplitude, and temperature-dependent experiments on the nano resonator and find a scenario which is consistent with the observation of single-defect relaxation.
PACS: 85.85.+j – Micro- and nano-electromechanical systems (MEMS/NEMS) and devices / 43.35.+d – Ultrasonics, quantum acoustics, and physical effects of sound / 61.72.Hh – Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.)
© EDP Sciences, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.