Issue |
EPL
Volume 78, Number 1, April 2007
|
|
---|---|---|
Article Number | 12001 | |
Number of page(s) | 5 | |
Section | Nuclear Physics | |
DOI | https://doi.org/10.1209/0295-5075/78/12001 | |
Published online | 09 March 2007 |
Reduction of the RPA eigenvalue problem and a generalized Cholesky decomposition for real-symmetric matrices
Institut für Kernphysik, Technische Universität Darmstadt - Schlossgartenstr. 9, D-64289 Darmstadt, Germany
Received:
28
November
2006
Accepted:
7
February
2007
The particular symmetry of the random-phase-approximation (RPA) matrix has been utilized in the past to reduce the RPA eigenvalue problem into a symmetric-matrix problem of half the dimension. The condition of positive-definiteness of at least one of the matrices has been imposed (where A and B are the submatrices of the RPA matrix) so that, e.g., its square root can be found by Cholesky decomposition. In this work, alternative methods are pointed out to reduce the RPA problem to a real (not symmetric, in general) problem of half the dimension, with the condition of positive-definiteness relaxed. One of the methods relies on a generalized Cholesky decomposition, valid for non-singular real symmetric matrices. The algorithm is described and a corresponding routine in C is given.
PACS: 21.60.Jz – Hartree-Fock and random-phase approximations / 02.60.Dc – Numerical linear algebra / 02.10.Yn – Matrix theory
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.