Issue |
EPL
Volume 78, Number 2, April 2007
|
|
---|---|---|
Article Number | 20005 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/78/20005 | |
Published online | 03 April 2007 |
Two-population replicator dynamics and number of Nash equilibria in matrix games
The Abdus Salam International Centre for Theoretical Physics - Strada Costiera 11, 34014 Trieste, Italy and CNR-INFM, Trieste-SISSA Unit - V. Beirut 2-4, 34014 Trieste, Italy
Received:
9
September
2006
Accepted:
7
March
2007
We study the connection between the evolutionary replicator dynamics and the number of Nash equilibria in large random bi-matrix games. Using techniques of disordered systems theory we compute the statistical properties of both, the fixed points of the dynamics and the Nash equilibria. Except for the special case of zero-sum games, one finds a transition as a function of the so-called co-operation pressure between a phase in which there is a unique stable fixed point of the dynamics coinciding with a unique Nash equilibrium, and an unstable phase in which there are exponentially many Nash equilibria with statistical properties different from the stationary state of the replicator equations. Our analytical results are confirmed by numerical simulations of the replicator dynamics, and by explicit enumeration of Nash equilibria.
PACS: 02.50.Le – Decision theory and game theory / 75.10.Nr – Spin-glass and other random models / 87.23.Kg – Dynamics of evolution
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.