Issue |
EPL
Volume 79, Number 1, July 2007
|
|
---|---|---|
Article Number | 18002 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/79/18002 | |
Published online | 07 June 2007 |
Driven polymer translocation through a nanopore: A manifestation of anomalous diffusion
1
Max Planck Institute for Polymer Research - 10 Ackermannweg 55128 Mainz, Germany
2
Delft University of Technology - 2628CD Delft, The Netherlands
3
Institute for Physical Chemistry Bulgarian Academy of Science - 1113 Sofia, Bulgaria
Received:
20
February
2007
Accepted:
18
May
2007
We study the translocation dynamics of a polymer chain threaded through a nanopore by an external force. By means of diverse methods (scaling arguments, fractional calculus and Monte Carlo simulation) we show that the relevant dynamic variable, the translocated number of segments , displays an anomalous diffusive behavior even in the presence of an external force. The anomalous dynamics of the translocation process is governed by the same universal exponent , where ν is the Flory exponent and the surface exponent, which was established recently for the case of non-driven polymer chain threading through a nanopore. A closed analytic expression for the probability distribution function , which follows from the relevant fractional Fokker-Planck equation, is derived in terms of the polymer chain length N and the applied drag force f. It is found that the average translocation time scales as . Also the corresponding time-dependent statistical moments, and reveal unambiguously the anomalous nature of the translocation dynamics and permit direct measurement of α in experiments. These findings are tested and found to be in perfect agreement with extensive Monte Carlo (MC) simulations.
PACS: 82.35.Lr – Physical properties of polymers / 87.15.Vv – Diffusion / 87.15.Aa – Theory and modeling; computer simulation
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.