Issue |
EPL
Volume 79, Number 5, September 2007
|
|
---|---|---|
Article Number | 58003 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/79/58003 | |
Published online | 31 July 2007 |
Spontaneous coarsening of a colloidal network driven by self-generated mechanical stress
Institute of Industrial Science, University of Tokyo - Meguro-ku, Tokyo 153-8505, Japan
Corresponding author: tanaka@iis.u-tokyo.ac.jp
Received:
17
April
2007
Accepted:
6
July
2007
Colloidal suspensions can be regarded as an ideal model system for such key daily materials as emulsions, protein solutions, foods, and inks. When colloidal particles strongly attract each other, they aggregate, phase-separate, and sometimes form gels. The basic understanding of this spatially heterogeneous jamming process is of crucial importance from both scientific and industrial viewpoints. Usually it is believed that if colloids attract very strongly with adhesion energy more than 10 times the thermal energy, networks formed by aggregation do not coarsen with time and a stable gel is immediately formed. Contrary to this common belief, we demonstrate by numerical simulation that the coarsening of a colloidal network can proceed by self-generated mechanical stress even without any thermal noise for a system of long-range interactions: fracture-induced coarsening. This remarkable kinetic pathway of purely mechanical origin may shed new light on our basic understanding of the stability and aging (or coarsening) behaviour of colloidal gels.
PACS: 82.70.Dd – Colloids / 82.70.Gg – Gels and sols / 64.75.+g – Solubility, segregation, and mixing; phase separation
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.