Issue |
EPL
Volume 80, Number 1, October 2007
|
|
---|---|---|
Article Number | 14001 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/80/14001 | |
Published online | 28 August 2007 |
Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh-Bénard convection
Department of Physics and iQCD, University of California - Santa Barbara, CA 93106, USA
Received:
6
July
2007
Accepted:
3
August
2007
We report temperature measurements for a cylindrical sample of turbulent Rayleigh-Bénard convection (RBC) at points in the interior, well away from the thermal boundary layers near the top and bottom of the sample. The aspect ratio was equal to 1.00 and the Prandtl number was equal to 4.4 or 5.5. The data are in the range 5107 < R < 1010, where R is the Rayleigh number. Measurements of the temperatures T(r, z, θ) at the side wall (r = L/2) at eight equally spaced azimuthal positions and on three horizontal planes located at vertical positions z = -L/4, 0, L/4 (the sample height and diameter are equal to L and is located at half height) are reported. An analysis of the harmonic contents of T(L/2, 0, θ) did not reveal any symmetry-breaking deviations from the Oberbeck-Boussinesq approximation even under conditions where the azimuthal average of the center temperature Tw(z) = T(L/2, z, θ) at differed appreciably from the mean temperature Tm = (Tt + Tb)/2 (Tt and Tb are the top and bottom temperatures, respectively). The azimuthal average of the vertical temperature variation (/4)-Tw(L/4)] /(Tb-Tt) at the side wall, presumably dominated by plume activity, was found to be destabilizing and quite large, ranging from about 0.2 at R = 5107 to about 0.06 at R = 1010. We also report data for the temperature T0(z) along the center line () at z = -L/4, 0, L/4. In contrast to Tw(z), T0(z) revealed a small stabilizing gradient (-L/4)-T0(L/4)] /(Tb-Tt) that depended only weakly on R and was about equal to -0.007 for σ = 4.4 and -0.013 for σ = 5.5.
PACS: 47.27.-i – Turbulent flows / 47.55.P- – Buoyancy-driven flows; convection
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.