Issue |
EPL
Volume 80, Number 3, November 2007
|
|
---|---|---|
Article Number | 34002 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/80/34002 | |
Published online | 28 September 2007 |
NonOberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol
1
Physics of Fluids group, Department of Applied Physics, J. M. Burgers Centre for Fluid Dynamics, and Impact-, MESA-, and BMTI-Institutes, University of Twente - P. O. Box 217, 7500 AE Enschede, The Netherlands
2
Fachbereich Physik der Philipps-Universitaet - Renthof 6, D-35032 Marburg, Germany
Received:
1
July
2007
Accepted:
3
September
2007
We numerically analyze NonOberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Bénard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number Ra up to 108 (for fixed temperature difference between the top and bottom plates) and as functions of (“non-Oberbeck-Boussinesqness” or “NOBness”) up to (for fixed Ra). For this large NOBness the center temperature Tc is more than larger than the arithmetic mean temperature Tm between top and bottom plate and only weakly depends on Ra. To physically account for the NOB deviations of the Nusselt numbers from its Oberbeck-Boussinesq values, we apply the decom- position of into the product of two effects, namely first the change in the sum of the top and bottom thermal BL thicknesses, and second the shift of the center temperature Tc as compared to Tm. While for water the origin of the Nu deviation is totally dominated by the second effect (cf. Ahlers G. et al., J. Fluid Mech., 569 (2006) 409) for glycerol the first effect is dominating, in spite of the large increase of Tc as compared to Tm.
PACS: 47.27.te – Turbulent convective heat transfer / 47.20.Bp – Buoyancy-driven instabilities (e.g., Rayleigh-Bénard) / 47.27.ek – Direct numerical simulations
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.