Issue |
EPL
Volume 82, Number 2, April 2008
|
|
---|---|---|
Article Number | 27004 | |
Number of page(s) | 5 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/82/27004 | |
Published online | 11 April 2008 |
Electronic properties of nanotube-based sensors: An inverse modeling approach
School of Physics, Trinity College Dublin - Dublin 2, Ireland, EU
Corresponding authors: gomesdac@tcd.ie ferreirm@tcd.ie
Received:
4
January
2008
Accepted:
5
March
2008
Nanotube-based sensors depend on significant conductivity changes induced by doping. Predictions of which impurity/nanotube combination provides efficient sensor characteristics are usually made on a case-by-case basis, following the study of how a particular nanotube responds to the presence of a specific doping agent. With a multitude of possible combinations, this so-called forward modeling approach is unable to address questions of general nature, like, for instance, the necessary features the components must have to produce certain physical properties on the device. Questions of this nature call for an inverse modeling scheme in which information about the sensor components can be extracted from the knowledge of a few physical quantities demanded for the device. Here we make use of a mathematically transparent formalism that works in both the forward and the inverse directions. We argue that this method can provide general guidelines on the absorption process and narrow the search for the ideal combination of tube and doping agents required to produce efficient nanoscopic sensors.
PACS: 71.15.-m – Methods of electronic structure calculations / 73.22.-f – Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals / 71.55.-i – Impurity and defect levels
© EPLA, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.