Issue |
EPL
Volume 83, Number 6, September 2008
|
|
---|---|---|
Article Number | 60005 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/83/60005 | |
Published online | 09 September 2008 |
Combinatorial detection of determinism in noisy time series
1
Centro de Investigación Operativa, Universidad Miguel Hernández - Avda. de la Universidad s/n., 03202 Elche, Spain, EU
2
Departamento de Física, Universidad Rey Juan Carlos - Tulipán s/n, 28933 Madrid, Spain, EU
Corresponding author: jm.amigo@umh.es
Received:
7
February
2008
Accepted:
31
July
2008
This paper deals with the distinction between white noise and deterministic chaos in multivariate noisy time series. Our method is combinatorial in the sense that it is based on the properties of topological permutation entropy, and it becomes especially interesting when the noise is so high that the standard denoising techniques fail, so a detection of determinism is the most one can hope for. It proceeds by i) counting the number of the so-called ordinal patterns in independent samples of length L from the data sequence and ii) performing a test based on the results of i), the null hypothesis being that the data are white noise. Holds the null hypothesis, so should all possible ordinal patterns of a given length be visible and evenly distributed over sufficiently many samples, contrarily to what happens in the case of noisy deterministic data. We present numerical evidence in two dimensions for the efficiency of this method. A brief comparison with two common tests for independence, namely, the calculation of the autocorrelation function and the BDS algorithm, is also performed.
PACS: 05.45.Tp – Time series analysis / 05.40.Ca – Noise / 02.50.-r – Probability theory, stochastic processes, and statistics
© EPLA, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.