Issue |
EPL
Volume 86, Number 3, May 2009
|
|
---|---|---|
Article Number | 30001 | |
Number of page(s) | 5 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/86/30001 | |
Published online | 12 May 2009 |
The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion
1
Departamento de Matemática Aplicada y Estadística, ETSI Aeronáuticos, Universidad Politécnica de Madrid Madrid, Spain, EU
2
Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - Barcelona, Spain, EU
3
Departamento de Matemática Aplicada a los Recursos Naturales, ETSI Montes, Universidad Politécnica de Madrid Madrid, Spain, EU
Received:
7
January
2009
Accepted:
14
April
2009
Fractional Brownian motion (fBm) has been used as a theoretical framework to study real-time series appearing in diverse scientific fields. Because of its intrinsic nonstationarity and long-range dependence, its characterization via the Hurst parameter, H, requires sophisticated techniques that often yield ambiguous results. In this work we show that fBm series map into a scale-free visibility graph whose degree distribution is a function of H. Concretely, it is shown that the exponent of the power law degree distribution depends linearly on H. This also applies to fractional Gaussian noises (fGn) and generic noises. Taking advantage of these facts, we propose a brand new methodology to quantify long-range dependence in these series. Its reliability is confirmed with extensive numerical simulations and analytical developments. Finally, we illustrate this method quantifying the persistent behavior of human gait dynamics.
PACS: 05.45.Tp – Time series analysis / 05.40.Jc – Brownian motion / 89.75.Hc – Networks and genealogical trees
© EPLA, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.