Issue |
EPL
Volume 87, Number 1, July 2009
|
|
---|---|---|
Article Number | 17009 | |
Number of page(s) | 5 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/87/17009 | |
Published online | 24 July 2009 |
Quantum Hall effect in biased bilayer graphene
1
Department of Physics, Southeast University - Nanjing 210096, China
2
Department of Physics and Astronomy, California State University - Northridge, CA 91330, USA
3
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University Nanjing 210093, China
Corresponding author: njrma@hotmail.com
Received:
10
May
2009
Accepted:
25
June
2009
We numerically study the quantum Hall effect in biased bilayer graphene based on a tight-binding model in the presence of disorder. Integer quantum Hall plateaus with quantized conductivity (where ν is an integer) are observed around the band center due to the split of the valley degeneracy by an opposite voltage bias added to the two layers. The central (n = 0) Dirac-Landau level is also split, which leads to a pronounced ν = 0 plateau. This is consistent with the opening of a sizable gap between the valence and conduction bands. The exact spectrum in an open system further reveals that there are no conducting edge states near zero energy, indicating an insulator state with zero conductance. Consequently, the resistivity should diverge at the Dirac point. Interestingly, the ν = 0 insulating state can be destroyed by disorder scattering with intermediate strength, where a metallic region is observed near zero energy. In the strong-disorder regime, the Hall plateaus with nonzero ν are destroyed due to the float-up of extended levels toward the band center and higher plateaus disappear first.
PACS: 73.43.Cd – Theory and modeling / 72.10.-d – Theory of electronic transport; scattering mechanisms / 72.15.Rn – Localization effects (Anderson or weak localization)
© EPLA, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.