Issue |
EPL
Volume 87, Number 4, August 2009
|
|
---|---|---|
Article Number | 48011 | |
Number of page(s) | 5 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/87/48011 | |
Published online | 15 September 2009 |
Swarming dynamics in bacterial colonies
Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin Austin, TX 78712, USA
Corresponding author: zhang@chaos.utexas.edu
Received:
17
July
2009
Accepted:
14
August
2009
We determine and relate the characteristic velocity, length, and time scales for bacterial motion in swarming colonies of Paenibacillus dendritiformis growing on semi-solid agar substrates. The bacteria swim within a thin fluid layer, and they form long-lived jets and vortices. These coherent structures lead to anisotropy in velocity spatial correlations and to a two-step relaxation in velocity temporal correlations. The mean squared displacement of passive tracers exhibits a short-time regime with nearly ballistic transport and a diffusive long-time regime. We find that various definitions of the correlation length all lead to length scales that are, surprisingly, essentially independent of the mean bacterial speed, while the correlation time is linearly proportional to the ratio of the correlation length to the mean speed.
PACS: 87.18.Gh – Cell-cell communication; collective behavior of motile cells / 47.63.Gd – Swimming microorganisms / 05.65.+b – Self-organized systems
© EPLA, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.