Issue |
EPL
Volume 89, Number 3, February 2010
|
|
---|---|---|
Article Number | 38004 | |
Number of page(s) | 5 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/89/38004 | |
Published online | 11 February 2010 |
Deformation of giant vesicles in AC electric fields —Dependence of the prolate-to-oblate transition frequency on vesicle radius
Institute of Solid State Physics, Bulgarian Academy of Sciences - 72, Tzarigradsko Chaussee blvd, 1784 Sofia, Bulgaria, EU
Corresponding author: victoria@issp.bas.bg
Received:
25
September
2009
Accepted:
12
January
2010
The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ = 114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.
PACS: 87.16.D- – Membranes, bilayers, and vesicles / 87.19.rd – Elastic properties / 87.50.cj – Electroporation/membrane effects
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.