Issue |
EPL
Volume 89, Number 5, March 2010
|
|
---|---|---|
Article Number | 58001 | |
Number of page(s) | 5 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/89/58001 | |
Published online | 26 February 2010 |
Spontaneous electron emission from a cold surface
Physics Department, Indiana University - Bloomington, IN 47405, USA
Corresponding author: meyer1@indiana.edu
Received:
1
February
2010
Accepted:
17
February
2010
At cryogenic temperature, the dark rate in a photomultiplier is caused by single electrons, emitted spontaneously from the cathode surface. This “cryogenic” dark rate increases with decreasing temperature down to at least 4 K. The average event rate is proportional to the area of the emitting surface and insensitive to the electric field at that surface. The electrons are emitted in bursts. The bursts are distributed randomly in time, but the events within a burst are highly correlated. The burst durations are distributed according to a power law. As the temperature decreases, the rate of bursts, as well as the number of events per burst, increase. The observed time distributions are indicative of a trap mechanism. So far, there is no physics explanation of the observed phenomenon.
PACS: 85.60.Ha – Photomultipliers phototubes and photocathodes / 79.75.+g – Exoelectron emission
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.