Issue |
EPL
Volume 90, Number 1, June 2010
|
|
---|---|---|
Article Number | 10015 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/90/10015 | |
Published online | 05 May 2010 |
Spreading in disordered lattices with different nonlinearities
Department of Physics and Astronomy, Potsdam University - 14476 Potsdam, Germany, EU
Received:
18
February
2010
Accepted:
6
April
2010
We study the spreading of initially localized states in a nonlinear disordered lattice described by the nonlinear Schrödinger equation with random on-site potentials —a nonlinear generalization of the Anderson model of localization. We use a nonlinear diffusion equation to describe the subdiffusive spreading. To confirm the self-similar nature of the evolution we characterize the peak structure of the spreading states with help of Rényi entropies and in particular with the structural entropy. The latter is shown to remain constant over a wide range of time. Furthermore, we report on the dependence of the spreading exponents on the nonlinearity index in the generalized nonlinear Schrödinger disordered lattice, and show that these quantities are in accordance with previous theoretical estimates, based on assumptions of weak and very weak chaoticity of the dynamics.
PACS: 05.45.-a – Nonlinear dynamics and chaos / 63.50.-x – Vibrational states in disordered systems / 72.15.Rn – Localization effects (Anderson or weak localization)
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.