Issue |
EPL
Volume 90, Number 3, May 2010
|
|
---|---|---|
Article Number | 30006 | |
Number of page(s) | 4 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/90/30006 | |
Published online | 28 May 2010 |
A bound on Planck-scale modifications of the energy-momentum composition rule from atomic interferometry
1
Institute for Theoretical Physics and Spinoza Institute, Utrecht University - Leuvenlaan 4, Utrecht 3584 TD, The Netherlands, EU
2
Institute for Theoretical Physics, University of Wrocław - Pl. Maxa Borna 9, Pl–50-204 Wrocław, Poland, EU
Corresponding author: m.arzano@uu.nl
Received:
23
March
2010
Accepted:
21
April
2010
High-sensitivity measurements in atomic spectroscopy were recently used by Amelino-Camelia et al. (Phys. Rev. Lett., 103 (2009) 171302) to constraint the form of possible modifications of the energy-momentum dispersion relation resulting from Lorentz invariance violation (LIV). In this letter we show that the same data can be used successfully to set experimental bounds on deformations of the energy-momentum composition rule. Such modifications are natural in models of deformed Lorentz symmetry which are relevant in certain quantum gravity scenarios. We find the bound for the deformation parameter κ to be a few orders of magnitude below the Planck scale and of the same magnitude as the next-to-leading–order effect found by Amelino-Camelia et al. in the above-mentioned paper. We briefly discuss how it would be possible to distinguish between these two scenarios.
PACS: 04.60.Bc – Phenomenology of quantum gravity / 03.75.Dg – Atom and neutron interferometry / 11.10.Nx – Noncommutative field theory
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.