Issue |
EPL
Volume 92, Number 5, December 2010
|
|
---|---|---|
Article Number | 50006 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/92/50006 | |
Published online | 22 December 2010 |
Breaking quantum linearity: Constraints from human perception and cosmological implications
1
Department of Physics, University of Trieste - Strada Costiera 11, 34151 Trieste, Italy, EU
2
INFN, Trieste Section - Via Valerio 2, 34127 Trieste, Italy, EU
3
Mathematisches Institut der L.M.U. - Theresienstr. 39, 80333 München, Germany, EU
Received:
30
July
2010
Accepted:
17
November
2010
Resolving the tension between quantum superpositions and the uniqueness of the classical world is a major open problem. One possibility, which is extensively explored both theoretically and experimentally, is that quantum linearity breaks above a given scale. Theoretically, this possibility is predicted by collapse models. They provide quantitative information on where violations of the superposition principle become manifest. Here we show that the lower bound on the collapse parameter λ, coming from the analysis of the human visual process, is ∼7±2 orders of magnitude stronger than the original bound, in agreement with more recent analysis. This implies that the collapse becomes effective with systems containing ∼104–105 nucleons, and thus falls within the range of testability with present-day technology. We also compare the spectrum of the collapsing field with those of known cosmological fields, showing that a typical cosmological random field can yield an efficient wave function collapse.
PACS: 03.65.Ta – Foundations of quantum mechanics; measurement theory / 02.50.Ey – Stochastic processes / 02.30.Jr – Partial differential equations
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.