Issue |
EPL
Volume 92, Number 5, December 2010
|
|
---|---|---|
Article Number | 56002 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Structural, Mechanical and Thermal Properties | |
DOI | https://doi.org/10.1209/0295-5075/92/56002 | |
Published online | 04 January 2011 |
Pressure-induced structural transition and thermodynamic properties of NbN and effect of metallic bonding on its hardness
1
Institute of Atomic and Molecular Physics, Sichuan University - Chengdu 610065, China
2
International Centre for Materials Physics, Academia Sinice - Shenyang 110016, China
3
Physics department, Sichuan normal university - Chengdu 610068, China
Received:
10
October
2010
Accepted:
19
November
2010
Using first-principles calculations, the elastic constants, thermodynamic properties and structural phase transition of NbN under high pressure are investigated by means of the pseudopotential plane-waves method, in addition to the effect of metallic bonding on its hardness. Three candidate structures are chosen to investigate NbN, namely, rocksalt (NaCl), NiAs and WC types. On the basis of the third-order Birch-Murnaghan equation of states, the transition pressure Pt (Pt = 200.64 GPa) between the WC phase and the NaCl phase of NbN is predicted for the first time. Elastic constants, formation enthalpies, shear modulus, Young's modulus, and Poisson's ratio of NbN are derived. The calculated results are found to be in good agreement with the available experimental data and theoretical values. According to the quasi-harmonic Debye model, the Debye temperature under high pressure is derived from the average sound velocity. Moreover, the effect of metallic bonding on the hardness of NbN is investigated and the hardness shows a gradual decrease rather than increase under compression. This is a quantitative investigation on the structural and thermodynamic properties of NbN, and it still awaits experimental confirmation.
PACS: 64.60.Bd – General theory of phase transitions / 67.25.bd – Thermodynamic properties / 62.20.D- – Elasticity
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.