Issue |
EPL
Volume 93, Number 3, February 2011
|
|
---|---|---|
Article Number | 30002 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/93/30002 | |
Published online | 09 February 2011 |
Dynamic properties of the one-dimensional Bose-Hubbard model
1
Institut für Physik, Ernst-Moritz-Arndt- Universität Greifswald - D-17489 Greifswald, Germany, EU
2
Department of Physics, Philipps- Universität Marburg - D-35032 Marburg, Germany, EU
Received:
18
November
2010
Accepted:
17
January
2011
We use the density-matrix renormalization group method to investigate ground-state and dynamic properties of the one-dimensional Bose-Hubbard model, the effective model of ultracold bosonic atoms in an optical lattice. For fixed maximum site occupancy nb=5, we calculate the phase boundaries between the Mott insulator and the “superfluid” phase for the lowest two Mott lobes. We extract the Tomonaga-Luttinger parameter from the density-density correlation function and determine accurately the critical interaction strength for the Mott transition. For both phases, we study the momentum distribution function in the homogeneous system, and the particle distribution and quasi-momentum distribution functions in a parabolic trap. With our zero-temperature method we determine the photoemission spectra in the Mott insulator and in the “superfluid” phase of the one-dimensional Bose-Hubbard model. In the insulator, the Mott gap separates the quasi-particle and quasi-hole dispersions. In the “superfluid” phase the spectral weight is concentrated around zero momentum.
PACS: 03.75.Kk – Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow / 71.10.Fd – Lattice fermion models (Hubbard model, etc.)
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.