Issue |
EPL
Volume 93, Number 4, February 2011
|
|
---|---|---|
Article Number | 44001 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/93/44001 | |
Published online | 23 February 2011 |
Lattice models for ballistic aggregation in one dimension
1
Department of Physics, Indian Institute of Technology Bombay - Powai, Mumbai-400076, India
2
Institute of Mathematical Sciences, CIT campus - Taramani, Chennai-600113, India
Received:
5
December
2010
Accepted:
24
January
2011
We propose two lattice models in one dimension, with stochastically hopping particles which aggregate on contact. The hops are guided by “velocity rates" which themselves evolve according to the rules of ballistic aggregation as in a sticky gas in continuum. Our lattice models have both velocity and density fields and an appropriate real time evolution, such that they can be compared directly with event-driven molecular dynamics (MD) results for the sticky gas. We demonstrate numerically that the long-time and large-distance behavior of the lattice models is identical to that of the MD, and some exact results known for the sticky gas. In particular, the exactly predicted form of the non-Gaussian tail of the velocity distribution function is clearly exhibited. This correspondence of the lattice models and the sticky gas in continuum is nontrivial, as the latter has a deterministic dynamics with a local kinematic constraint, in contrast with the former; yet the spatial velocity profiles (with shocks) of the lattice models and the MD have a striking match.
PACS: 45.70.-n – Granular systems / 47.70.Nd – Nonequilibrium gas dynamics / 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.