Issue |
EPL
Volume 93, Number 5, March 2011
|
|
---|---|---|
Article Number | 57007 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/93/57007 | |
Published online | 11 March 2011 |
Conductance of Tomonaga-Luttinger liquid wires and junctions with resistances
Centre for High Energy Physics, Indian Institute of Science - Bangalore 560012, India
Received:
29
November
2010
Accepted:
9
February
2011
We study the effect that resistive regions have on the conductance of a quantum wire with interacting electrons which is connected to Fermi liquid leads. Using the bosonization formalism and a Rayleigh dissipation function to model the power dissipation, we use both scattering theory and Green's function techniques to derive the DC conductance. The resistive regions are generally found to lead to incoherent transport. For a single wire, we find that the resistance adds in series to the contact resistance of h/e2 for spinless electrons, and the total resistance is independent of the Luttinger parameter KW of the wire. We numerically solve the bosonic equations to illustrate what happens when a charge density pulse is incident on the wire; the results depend on the parameters of the resistive and interacting regions in interesting ways. For a junction of Tomonaga-Luttinger liquid wires, we use a dissipationless current splitting matrix to model the junction. For a junction of three wires connected to Fermi liquid leads, there are two families of such matrices; we find that the conductance matrix generally depends on KW for one family but is independent of KW for the other family, regardless of the resistances present in the system.
PACS: 73.23.-b – Electronic transport in mesoscopic systems / 73.63.Nm – Quantum wires / 71.10.Pm – Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.