Issue |
EPL
Volume 94, Number 2, April 2011
|
|
---|---|---|
Article Number | 24001 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/94/24001 | |
Published online | 18 April 2011 |
Mesoscale equipartition of kinetic energy in quantum turbulence
1
Institut Néel, CNRS/UJF, BP166 - F-38042 Grenoble Cedex 9, France, EU
2
Laboratoire de Physique, ENS Lyon, CNRS/Université de Lyon - F-69364 Lyon, France, EU
Received:
31
January
2011
Accepted:
16
March
2011
The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a “truncated HVBK” model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equations with the additional constraint that this continuous description cannot extend beyond a quantum length scale associated with the mean spacing between individual superfluid vortices. A good agreement is found with experimental measurements of the vortex density. Besides, by varying the turbulence intensity only, it is observed that the intervortex spacing varies with the Reynolds number as Re−3/4, like the viscous length scale in classical turbulence. In the high-temperature limit, Kolmogorov's inertial cascade is recovered, as expected from previous numerical and experimental studies. As the temperature decreases, the inertial cascade remains present at large scales while, at small scales, the system evolves towards a statistical equipartition of kinetic energy among spectral modes, with a characteristic k2 velocity spectrum. The accumulation of superfluid excitations on a range of mesoscales enables the superfluid to keep dissipating kinetic energy through mutual friction with the residual normal fluid, although the later becomes rare at low temperature. It is found that most of the superfluid vorticity can concentrate on these mesoscales at low temperature, while it is concentrated in the inertial range at higher temperature. This observation should have consequences on the interpretation of decaying turbulence experiments, which are often based on vortex line density measurements.
PACS: 47.37.+q – Hydrodynamic aspects of superfluidity; quantum fluids / 47.27.ek – Direct numerical simulations / 47.27.Gs – Isotropic turbulence; homogeneous turbulence
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.