Issue |
EPL
Volume 94, Number 3, May 2011
|
|
---|---|---|
Article Number | 30004 | |
Number of page(s) | 5 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/94/30004 | |
Published online | 28 April 2011 |
Partial Weyl law for billiards
1
Institut für Theoretische Physik, Technische Universität Dresden - 01062 Dresden, Germany, EU
2
Institut für Maschinenbau, Hochschule Magdeburg-Stendal - 39114 Magdeburg, Germany, EU
3
Max-Planck-Institut für Physik komplexer Systeme - Nöthnitzer Straße 38, 01187 Dresden, Germany, EU
Received:
4
February
2011
Accepted:
30
March
2011
For two-dimensional quantum billiards we derive the partial Weyl law, i.e. the average density of states, for a subset of eigenstates concentrating on an invariant region Γ of phase space. The leading term is proportional to the area of the billiard times the phase-space fraction of Γ. The boundary term is proportional to the fraction of the boundary where parallel trajectories belong to Γ. Our result is numerically confirmed for the mushroom billiard and the generic cosine billiard, where we count the number of chaotic and regular states, and for the elliptical billiard, where we consider rotating and oscillating states.
PACS: 05.45.Mt – Quantum chaos; semiclassical methods / 03.65.Sq – Semiclassical theories and applications
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.