Issue |
EPL
Volume 94, Number 6, June 2011
|
|
---|---|---|
Article Number | 64001 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/94/64001 | |
Published online | 03 June 2011 |
Bubble size prediction in co-flowing streams
1
Physics of Fluids Group, Faculty of Science and Technology, and MESA+ Institute for Nanotechnology, University of Twente - P.O. Box 217, 7500 AE Enschede, The Netherlands, EU
2
Institut de Physique de Rennes, UMR UR1-CNRS 6251, Université de Rennes I - Campus de Beaulieu, Bâtiment 11A, F-35042 Rennes Cedex, France, EU
3
Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla - Avda. de los Descubrimientos s/n, 41092, Sevilla, Spain, EU
Received:
10
February
2011
Accepted:
27
April
2011
In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving the Navier-Stokes equations for low-Reynolds-number flows and by conservation of momentum. The prediction of the bubble size is based on the system's control parameters only, i.e. the inner gas flow rate Qi, the outer liquid flow rate Qo, and the tube radius R. For a very low gas-to-liquid flow rate ratio (Qi/Qo→0) the bubble radius scales as , independently of the inner-to-outer viscosity ratio ηi/ηo and of the type of the velocity profile in the gas, which can be either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and the viscosity ratio is sufficiently low, i.e.
ηi/ηo ≪ 1, the bubble diameter scales as rb ∝ (Qi/Qo)β, with β smaller than 1/2.
PACS: 47.55.db – Drop and bubble formation / 47.61.Jd – Multiphase flows / 47.15.Rq – Laminar flows in cavities, channels, ducts, and conduits
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.