Issue |
EPL
Volume 95, Number 1, July 2011
|
|
---|---|---|
Article Number | 13001 | |
Number of page(s) | 6 | |
Section | Atomic, Molecular and Optical Physics | |
DOI | https://doi.org/10.1209/0295-5075/95/13001 | |
Published online | 15 June 2011 |
Global fixed-point proof of time-dependent density-functional theory
Department of Physics, Nanoscience Center, University of Jyväskylä - 40014 Jyväskylä, Finland, EU
Received:
24
February
2011
Accepted:
13
May
2011
We reformulate the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed-point question for potentials on a given time interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as well provided that the operator norms of the response functions of the members of the iterative sequence of potentials have an upper bound. The densities under consideration have second time-derivatives that are required to satisfy a condition slightly weaker than being square-integrable. This approach avoids the usual restrictions of Taylor-expandability in time of the uniqueness theorem by Runge and Gross (Phys. Rev. Lett., 52 (1984) 997) and of the existence theorem by van Leeuwen (Phys. Rev. Lett., 82 (1999) 3863). Owing to its generality, the proof not only answers basic questions in density-functional theory but also has potential implications in other fields of physics.
PACS: 31.15.ee – Time-dependent density functional theory / 31.10.+z – Theory of electronic structure, electronic transitions, and chemical binding / 71.15.Mb – Density functional theory, local density approximation, gradient and other corrections
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.