Issue |
EPL
Volume 95, Number 6, September 2011
|
|
---|---|---|
Article Number | 66003 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Structural, Mechanical and Thermal Properties | |
DOI | https://doi.org/10.1209/0295-5075/95/66003 | |
Published online | 02 September 2011 |
Dynamical inequality in growth models
1
Department of Mathematics, Kings College London - Strand, London WC2R 2LS, UK, EU
2
Department of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Tel Aviv 69978, Israel
a
eytan.katzav@kcl.ac.uk
b
bricki@netvision.net.il
Received:
21
June
2011
Accepted:
2
August
2011
A recent exponent inequality is applied to a number of dynamical growth models. Many of the known exponents for models such as the Kardar-Parisi-Zhang (KPZ) equation are shown to be consistent with the inequality. In some cases, such as the molecular beam equation, the situation is more interesting, where the exponents saturate the inequality. As the acid test for the relative strength of four popular approximation schemes we apply the inequality to the exponents obtained for two non-local KPZ systems. We find that all methods but one, the self-consistent expansion, violate the inequality in some regions of parameter space. To further demonstrate the usefulness of the inequality, we apply it to a specific model, which belongs to a family of models in which the inequality becomes an equality. We thus show that the inequality can easily yield results, which otherwise have to rely either on approximations or general beliefs.
PACS: 64.60.Ht – Dynamic critical phenomena / 02.50.-r – Probability theory, stochastic processes, and statistics / 89.75.Da – Systems obeying scaling laws
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.