Issue |
EPL
Volume 96, Number 4, November 2011
|
|
---|---|---|
Article Number | 47001 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/96/47001 | |
Published online | 02 November 2011 |
Microscopic model for Bose-Einstein condensation and quasiparticle decay
Theoretische Physik I, Technische Universität Dortmund - Otto-Hahn Straße 4, 44221 Dortmund, Germany, EU
a
fischer@fkt.physik.tu-dortmund.de
b
goetz.uhrig@tu-dortmund.de
Received:
13
May
2011
Accepted:
21
September
2011
Sufficiently dimerized quantum antiferromagnets display elementary S=1 excitations, triplon quasiparticles, protected by a gap at low energies. At higher energies, the triplons may decay into two or more triplons. A strong enough magnetic field induces Bose-Einstein condensation of triplons. For both phenomena the compound IPA-CuCl3 is an excellent model system. Nevertheless no quantitative model was determined so far despite numerous studies. Recent theoretical progress allows us to analyse data of inelastic neutron scattering (INS) and of magnetic susceptibility to determine the four magnetic couplings J1≈− 2.3 meV, J2≈1.2 meV, J3≈2.9 meV and J4≈− 0.3 meV. These couplings determine IPA-CuCl3 as system of coupled asymmetric S=1/2 Heisenberg ladders quantitatively. The magnetic field dependence of the lowest modes in the condensed phase as well as the temperature dependence of the gap without magnetic field corroborate this microscopic model.
PACS: 75.40.Gb – Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) / 75.10.Jm – Quantized spin models, including quantum spin frustration / 67.85.Jk – Other Bose-Einstein condensation phenomena
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.