Issue |
EPL
Volume 96, Number 4, November 2011
|
|
---|---|---|
Article Number | 44002 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/96/44002 | |
Published online | 09 November 2011 |
Origin of branched wave structures in optical media and long-tail algebraic intensity distribution
1
School of Electrical, Computer and Energy Engineering, Arizona State University - Tempe, AZ 85287, USA
2
Department of Physics, Arizona State University - Tempe, AZ 85287, USA
Received:
22
July
2011
Accepted:
26
September
2011
Experiments have revealed that branched, fractal-like wave patterns can arise in a variety of physical situations ranging from microwave and optical systems to solid-state devices, and that the wave-intensity statistics are non-Gaussian and typically exhibit a long-tail distribution. The origin of branched wave patterns is currently an issue of active debate. We propose and investigate a “minimal” model of optical wave propagation and scattering with two generic ingredients: 1) a finite-size medium for linear wave propagation and 2) random scatterers characterized by a continuous refractive-index profile. We find that branched waves can emerge as a general phenomenon in a wide parameter regime in between the weak-scattering limit and Anderson localization, and the distribution of high intensities follows an algebraic scaling law. The minimal model can provide insights into the physical origin of branched waves in other physical systems as well.
PACS: 42.25.Dd – Wave propagation in random media / 42.25.Bs – Wave propagation, transmission and absorption / 41.20.Jb – Electromagnetic wave propagation; radiowave propagation
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.