Issue |
EPL
Volume 96, Number 4, November 2011
|
|
---|---|---|
Article Number | 40014 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/96/40014 | |
Published online | 11 November 2011 |
A master stability function for stochastically coupled chaotic maps
Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University Brooklyn, NY 11201, USA
Received:
18
May
2011
Accepted:
4
October
2011
In this paper, we present a master stability function (MSF) for the synchronization of identical maps coupled by a class of stochastically switching weighted directed networks that encompasses Erdős-Rényi and numerosity-constrained models. Similarly to the classical MSF for static networks, the stochastic MSF allows for assessing synchronization in terms of spectral properties of the coupling network. Computation of the MSF involves the estimate of the Lyapunov exponents for an auxiliary dynamical system as a function of two independent parameters that are related to the spectral properties of the expectation and autocorrelation of the coupling matrix. We illustrate the results through simulations on chaotic Henon maps coupled through a numerosity-constrained network.
PACS: 05.45.Pq – Numerical simulations of chaotic systems / 89.75.-k – Complex systems / 05.45.Xt – Synchronization; coupled oscillators
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.