Issue |
EPL
Volume 96, Number 6, December 2011
|
|
---|---|---|
Article Number | 60013 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/96/60013 | |
Published online | 15 December 2011 |
Loss of synchronization in complex neuronal networks with delay
1
Institut für Theoretische Physik, Technische Universität Berlin - Hardenbergstraße 36, 10623 Berlin, Germany, EU
2
Bernstein Center for Computational Neuroscience Berlin - Philippstraße 13, Haus 2, 10115 Berlin, Germany, EU
a
lehnert@itp.tu-berlin.de
b
schoell@itp.tu-berlin.de
Received:
6
September
2011
Accepted:
10
November
2011
We investigate the stability of synchronization in networks of delay-coupled excitable neural oscillators. On the basis of the master stability function formalism, we demonstrate that synchronization is always stable for excitatory coupling independently of the delay and coupling strength. Superimposing inhibitory links randomly on top of a regular ring of excitatory coupling, which yields a small-world–like network topology, we find a phase transition to desynchronization as the probability of inhibitory links exceeds a critical value. We explore the scaling of the critical value in dependence on network properties. Compared to random networks, we find that small-world topologies are more susceptible to desynchronization via inhibition.
PACS: 05.45.Xt – Synchronization; coupled oscillators / 87.85.dq – Neural networks / 89.75.-k – Complex systems
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.