Issue |
EPL
Volume 97, Number 1, February 2012
|
|
---|---|---|
Article Number | 14002 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/97/14002 | |
Published online | 03 January 2012 |
Exploiting numerical diffusion to study transport and chaotic mixing for extremely large Péclet values
Materials Technology, Eindhoven University of Technology - PO Box 513, 5600 MB Eindhoven, The Netherlands, EU
Received:
7
August
2011
Accepted:
14
November
2011
We show that the purely convective mapping matrix approach provides an extremely versatile tool to study advection-diffusion processes for extremely large Péclet values (∼108 and higher). This is made possible due to the coarse-grained approximation that introduces numerical diffusion, the intensity of which depends in a simple way on grid resolution. This observation permits to address fundamental physical issues associated with chaotic mixing in the presence of diffusion. Specifically, we show that in partially chaotic flows, the dominant decay exponent of the advection diffusion propagator will eventually decay as Pe− 1 in the presence of quasiperiodic regions of finite measure, no matter how small they are. Examples of 2d and 3d partially chaotic flows are discussed.
PACS: 47.52.+j – Chaos in fluid dynamics / 47.61.Ne – Micromixing / 47.15.G- – Low-Reynolds-number (creeping) flows
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.