Issue |
EPL
Volume 97, Number 1, February 2012
|
|
---|---|---|
Article Number | 16003 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Structural, Mechanical and Thermal Properties | |
DOI | https://doi.org/10.1209/0295-5075/97/16003 | |
Published online | 03 January 2012 |
Numerical investigation of the radial quadrupole and scissors modes in trapped gases
Department of Mechanical and Aerospace Engineering, University of Strathclyde - Glasgow, G1 1XJ, UK, EU
Received:
5
September
2011
Accepted:
21
November
2011
The analytical expressions for the frequency and damping of the radial quadrupole and scissors modes, as obtained from the method of moments, are limited to the harmonic potential. In addition, the analytical results may not be sufficiently accurate as an average relaxation time is used and the high-order moments are ignored. Here, we numerically solve the Boltzmann model equation in the hydrodynamic, transition, and collisionless regimes to study mode frequency and damping. When the gas is trapped by the harmonic potential, we find that the analytical expressions underestimate the damping in the transition regime. Furthermore, we demonstrate that the numerical simulations are able to provide reasonable predictions for the collective oscillations in the Gaussian potentials. The present method can also be used to study many other problems, e.g. formation of quantum shockwave, expansion of atom cloud, and effective heat conductivity in very elongated traps.
PACS: 67.85.De – Dynamic properties of condensates; excitations, and superfluid flow / 51.10.+y – Kinetic and transport theory of gases / 05.20.Dd – Kinetic theory
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.