Issue |
EPL
Volume 97, Number 2, January 2012
|
|
---|---|---|
Article Number | 27005 | |
Number of page(s) | 5 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/97/27005 | |
Published online | 18 January 2012 |
Magnetic frustration in the context of pseudo-dipolar ionic disorder
1
Department of Chemistry, University College London - 20, Gordon Street, London WC1H 0AJ, UK, EU
2
London Centre for Nanotechnology, University College London - 17–19 Gordon Street, London WC1H 0AH, UK, EU
3
Department of Physics and Astronomy, University College London - Gower Street, London WC1E 6BT, UK, EU
Received:
27
July
2011
Accepted:
29
November
2011
We consider an alternative to the usual spin glass paradigm for disordered magnetism, consisting of the previously unstudied combination of frustrated magnetic interactions and pseudo-dipolar disorder in spin positions. We argue that this model represents a general limiting case for real systems as well as a realistic model for certain binary fluorides and oxides. Furthermore, it is of great relevance to the highly topical subjects of the Coulomb phase and “charge ice”. We derive an analytical solution for the ground-state phase diagram of a model system constructed in this paradigm and identify magnetic phases that remain either disordered or partially ordered even at zero temperature. These phases are of a hitherto unobserved type, but may be broadly classified as either “spin liquids” or “semi-spin liquids” in contrast to the usual spin glass or semi-spin glass. Numerical simulations are used to show that the spin liquid phase exhibits no spin glass transition at finite temperature, despite the combination of frustration and disorder. By mapping onto a model of uncoupled loops of Ising spins, we show that the magnetic structure factor of this phase acts, in the limit T→0, as a sensitive probe of the positional disorder correlations. We suggest that this result can be generalized to more complex systems, including experimental realizations of canonical spin glass models.
PACS: 75.10.Hk – Classical spin models / 75.10.Nr – Spin-glass and other random models / 75.25.-j – Spin arrangements in magnetically ordered materials (including neutron and spin-polarized electron studies, synchrotron-source x-ray scattering, etc.)
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.