Issue |
EPL
Volume 97, Number 2, January 2012
|
|
---|---|---|
Article Number | 29001 | |
Number of page(s) | 4 | |
Section | Geophysics, Astronomy and Astrophysics | |
DOI | https://doi.org/10.1209/0295-5075/97/29001 | |
Published online | 10 January 2012 |
Volcanic eruptions: Initial state of magma melt pulse unloading
1
Department of Environmental Science, Second University of Naples - Caserta, Italy, EU
2
Department of Civil Engineering, Second University of Naples - Aversa, Italy, EU
a
milena.bottiglieri@unina2.it
Received:
28
September
2011
Accepted:
30
November
2011
In this paper we perform a linear stability analysis of the equilibrium solution of a suitable Korteweg model for a two-phase fluid modeling a magma transport in a volcanic conduit. By perturbing the fluid at rest and applying the principle of exchange of stabilities, we prove that at the onset of instability, a stationary cellular convection of bubbles prevails. This behavior could be a reasonable description of the transition from the two-phase system magma-dissolved gas in the chamber to the rising foam in the conduit, due to rapid decompression at the initial stage of a volcano's eruption. We analyze the disturbances in normal modes and show that the dimension of the cells, given by a suitable critical value of the wavelength, corresponds, consistently with the model, to the width of the Gaussian-shaped solitary wave solution found in the dynamical case. The implication of the model is to furnish the threshold value of the perturbations normal mode in order to trigger magma fragmentation, and as a consequence, we obtain the dimension value of the early cells of bubbles at the conduit's base.
PACS: 91.40.Ft – Eruption mechanisms / 47.20.-k – Flow instabilities / 47.35.Fg – Solitary waves
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.