Issue |
EPL
Volume 97, Number 3, February 2012
|
|
---|---|---|
Article Number | 30007 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/97/30007 | |
Published online | 06 February 2012 |
Two kinds of rogue waves of the general nonlinear Schrödinger equation with derivative
Department of Mathematics, Ningbo University - Ningbo, Zhejiang 315211, PRC
a
hejingsong@nbu.edu.cn
b
jshe@ustc.edu.cn
Received:
25
October
2011
Accepted:
4
January
2012
In this letter, the designable integrability (DI) of the variable coefficient derivative nonlinear Schrödinger equation (VCDNLSE) is shown by construction of an explicit transformation which maps VCDNLSE to the usual derivative nonlinear Schrödinger equation (DNLSE). One novel feature of VCDNLSE with DI is that its coefficients can be designed artificially and analytically by using transformation. What is more, from the rogue wave and rational traveling solution of the DNLSE, we get two kinds of rogue waves of the VCDNLSE by this transformation. One kind of rogue wave has vanishing boundary condition, and the other non-vanishing boundary condition. The DI of the VCDNLSE also provides a possible way to control the profile of the rogue wave in physical experiments.
PACS: 02.30.Ik – Integrable systems / 42.81.Dp – Propagation, scattering, and losses; solitons / 52.35.Bj – Magnetohydrodynamic waves (e.g., Alfven waves)
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.