Issue |
EPL
Volume 97, Number 6, March 2012
|
|
---|---|---|
Article Number | 67009 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/97/67009 | |
Published online | 21 March 2012 |
Universal logarithmic terms in the entanglement entropy of 2d, 3d and 4d random transverse-field Ising models
1
Department of Physics, Loránd Eötvös University - H-1117 Budapest, Pázmány P. s. 1/A, Hungary, EU
2
Wigner Research Centre, Institute for Solid State Physics and Optics H-1525 Budapest, P.O. Box 49, Hungary, EU
3
Institute of Theoretical Physics, Szeged University - H-6720 Szeged, Hungary, EU
a
kovacs.istvan@wigner.mta.hu
b
igloi.ferenc@wigner.mta.hu
Received:
24
January
2012
Accepted:
27
February
2012
The entanglement entropy of the random transverse-field Ising model is calculated by a numerical implementation of the asymptotically exact strong disorder renormalization group method in 2d, 3d and 4d hypercubic lattices for different shapes of the subregion. We find that the area law is always satisfied, but there are analytic corrections due to E-dimensional edges (1⩽E⩽d− 2). More interesting is the contribution arising from corners, which is logarithmically divergent at the critical point and its prefactor in a given dimension is universal, i.e., independent of the form of disorder.
PACS: 75.10.Nr – Spin-glass and other random models / 03.65.Ud – Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.) / 73.43.Nq – Quantum phase transitions
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.